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Abstract

In this paper, the incremental harmonic balance (IHB) method is formulated for the nonlinear vibration
analysis of axially moving beams. The Galerkin method is used to discretize the governing equations. A
high-dimensional model that can take nonlinear model coupling into account is derived. The forced
response of an axially moving strip with internal resonance between the first two transverse modes is
studied. Particular attention is paid to the fundamental, superharmonic and subharmonic resonance as the
excitation frequency is close to the first, second or one-third of the first natural frequency of the system.
Numerical results reveal the rich and interesting nonlinear phenomena that have not been presented in the
existent literature on the nonlinear vibration of axially moving media.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Axially moving systems can be found in a wide range of engineering problems which arise in
industrial, civil, mechanical, electronic and automotive applications. Magnetic tapes, power
transmission belts and band saw blades are examples where an axial transport of mass is
associated with a transverse vibration.
Analytical models for axially moving systems have been extensively studied in the last few

decades. The vast literature on axially moving material vibration has been reviewed by Wickert
see front matter r 2004 Elsevier Ltd. All rights reserved.
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and Mote [1] up to 1988. More recently, the problem of axially moving media has been tackled in
the analysis of particular aspects such as different solution techniques, discretization approaches,
modeling aspects and nonlinear phenomena, see the review in Ref. [2]. Most of these studies
addressed the problem of constant axial transport velocity and constant axial tension. Wickert
and Mote [3] studied the transverse vibration of axially moving strings and beams using an
eigenfunction method. They also used the Green function method to study the dynamic response
of an axially moving string loaded with a traveling periodic suspended mass [4]. Wickert [5]
presented a complete study of the nonlinear vibrations and bifurcations of moving beams using
the Krylov–Bogoliubov–Mitropolsky asymptotic method. Chakraborty et al. [6,7] investigated
both free and forced responses of a traveling beam using nonlinear complex normal modes.
Pellicano and Vestroni [2] studied the dynamic behavior of an axially moving beam using a high-
dimensional discrete model obtained by the Galerkin procedure. Al-Jawi et al. [8–10] investigated
the effects of tension disorder, inter-span coupling and translational speed on the confinement of
the natural modes of free vibration through the exact, the perturbation and the Galerkin
approaches. By analytical and numerical means, Chen [11] studied the natural frequencies and
stability of an axially traveling string in contact with a stationary load system which contains
parameters such as dry friction, inertia, damping and stiffness. Riedel and Tan [12] studied the
coupled and forced responses of an axially moving strip with internal resonance. The method of
multiple scales is used to perform the perturbation analysis and to determine the frequency
response numerically for both low and high speeds.
There are papers devoted to the analysis of the dynamic behavior of traveling systems with

time-dependent axial velocity or with time-dependent axial tension force. Pakdemirli et al. [13]
conducted a stability analysis using Floquet theory for sinusoidal transporting velocity function.
They also investigated the principal parametric resonance and the combination of resonances for
an axially accelerating string using the method of multiple scales [14]. Mockensturm et al. [15]
applied the Galerkin procedure and the perturbation method of Krylov–Bogoliubov–Mitropolsky
to examine the stability and limit cycles of parametrically excited and axially moving strings in the
presence of tension fluctuations. Zhang and Zu [16,17] employed the method of multiple scales to
study the nonlinear vibration of parametrically excited moving belts. Suweken and Van Horssen
[18] used a two time-scales perturbation method to approximate the solutions of a conveyor belt
with a low and time-varying velocity. Öz and Pakdemirli [19,20] also applied the method of
multiple scales to study the vibration of an axially moving beam with time-dependent velocity.
Fung and Chang [21] employed the finite difference method with variable grid for numerical
calculation of string/slider nonlinear coupling system with time-dependent boundary condition.
Ravindra and Zhu [22] studied the low-dimensional chaotic response of axially accelerating
continuum in the supercritical regime. Moon and Wickert [23] performed an analytical and
experimental study on the response of a belt excited by pulley eccentricities. Pellicano et al. [24]
studied the primary and parametric nonlinear resonance of a power transmission belt by
experimental and theoretical analysis.
In this paper, the incremental harmonic balance (IHB) method is applied to analyze the

nonlinear vibration of axially moving systems. The IHB method was originally presented by Lau
and Cheung [25], Cheung and Lau [26] and Lau et al. [27]. It has been developed and successfully
applied to the analysis of periodic nonlinear structural vibrations and the related problems.
However, none of these applications is related to axially moving systems. This paper starts with an
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introduction on the essence of the IHB method. Using the method, some particular cases of the
axially moving beam problem are effectively treated. As a matter of fact, the generalization of the
IHB method to other moving media and other nonlinear vibration problems is simple and
straightforward.
2. Equations of motion

The governing equations of two dimensional, planar motion of an axially moving beam can be
derived using Hamilton’s Principle. Following a similar derivation to that of Wickert [5], one
obtains the following coupled nonlinear dimensionless equations of motion:

ðu;tt þ 2vu;xt þ v2u;xxÞ � v21ðu;x þ
1
2
w;2xÞ;x ¼ 0; ð1Þ

ðw;tt þ 2vw;xt þ v2w;xxÞ � f½1þ v21ðu;x þ
1
2
w;2xÞ�w;xg;x þ v2f w;xxxx ¼ 0; ð2Þ

where

u ¼ U=L; w ¼ W=L; x ¼ X=L; t ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P=rAL2

q
; ð3Þ

v ¼ V=
ffiffiffiffiffiffiffiffiffiffiffiffi
P=rA

p
; v1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EA=P

p
; vf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=PL2

q
: ð4Þ

Here, X and Z are respectively the longitudinal and transverse coordinates of the beam, U and W
are respectively the longitudinal and transverse displacements, V is the axial speed, T denotes time
and P is the axial tension, see Fig. 1. Properties of the beam include the beam length L, the cross-
section area A, the second moment of area I, the mass density r and the elastic modulus E. Lastly,
ðu;tt; w;ttÞ; ð2vu;xt; 2vw;xtÞ and ðv2u;xx; v2w;xxÞ are respectively the local, Coriolis and centripetal
acceleration vectors. In particular, V, P, L, A, I, r and I are constants whereas P must be nonzero.
The boundary conditions for a hinged–hinged beam are

uð0; tÞ ¼ uð1; tÞ ¼ 0; ð5Þ

wð0; tÞ ¼ wð1; tÞ ¼ 0; w;xxð0; tÞ ¼ w;xxð1; tÞ ¼ 0: ð6Þ
X

Z

V

F(X T)

Fig. 1. Schematic diagram for an axially moving beam and its coordinate system, where F denotes the force acting per

unit length of the beam.
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3. Separation of variables

In the nonlinear vibration analysis of continuous systems, the variables uðx; tÞ and wðx; tÞ in the
partial differential equations (1) and (2) with boundary conditions (5) and (6) are usually
separated. The use of eigenfunctions as a complete basis is often the choice because of their
promising accuracy and convergence. Unfortunately, the eigenfunctions of traveling beams are
complex and dependent on the speed. In the present study, we assume the following separable
solutions in terms of admissible functions:

uðx; tÞ ¼
XN

j¼1

qu
j ðtÞ sin jpx; ð7Þ

wðx; tÞ ¼
XN

j¼1

qw
j ðtÞ sin jpx: ð8Þ

After substituting Eqs. (7) and (8) into Eqs. (1) and (2), the Galerkin procedure leads to the
following set of N+M second-order ordinary differential equationsXN

j¼1

Mu
ij €q

u
j þ

XN

j¼1

Cu
ij _q

u
j þ

XN

j¼1

Ku
ijq

u
j þ

XN

j¼1

XM

k¼1

Kw
ijkqw

k qw
j ¼ 0 for i ¼ 1; 2; . . . ; N; ð9Þ

XM

j¼1

Mw
ij €q

w
j þ

XM

j¼1

Cw
ij _q

w
j þ

XM

j¼1

Kw
ij q

w
j þ

XM

j¼1

XN

k¼1

Ku
ijkqu

kqw
j þ

XM

j¼1

XM

k¼1

XM

l¼1

Kw
ijklq

w
l qw

k qw
j ¼ 0

for i ¼ 1; 2; . . . ; M; ð10Þ

where the dot above a variable denotes its derivative with respect to the nondimensional time t,

Mu
ij ¼ Mw

ij ¼

Z1

0

sin ipx sin jpxdx ¼ 1
2
dij ;

Ku
ij ¼ �ðv2 � v21Þj

2p2
Z1

0

sin ipx sin jpxdx ¼ �1
2
ðv2 � v21Þj

2p2dij;

Cu
ij ¼ Cw

ij ¼ 2vjp
Z 1

0

sin ipx cos jpxdx ¼
4ijv=ði2 � j2Þ; iaj and ði þ jÞ is even;

0; otherwise;

(

Kw
ijk ¼ v21jk

2p3
Z 1

0

sin ipx cos jpx sin kpxdx ¼ v21jk
2p3Iscsði; j; kÞ;

Kw
ij ¼ ½v2f j4p4 � ðv2 � 1Þj2p2�

Z1

0

sin ipx sin jpxdx ¼ 1
2
½v2f j4p4 � ðv2 � 1Þj2p2�dij ;
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Ku
ijk ¼ v21jk

2p3
Z 1

0

sin ipx cos jpx sin kpxdx þ v21kj2p3
Z 1

0

sin ipx cos kpx sin jpxdx;

¼ v21jk
2p3Iscsði; j; kÞ þ v21kj2p3Iscsði; k; jÞ;

Kw
ijkl ¼

3
2
v21j

2klp4
Z1

0

sin ipx sin jpx cos kpx cos lpxdx ¼ 3
2
v21j

2klp4Issccði; j; k; lÞ;

Iscsði; j; kÞ ¼ 1
2
½Iccði � k; jÞ � IccðI þ k; jÞ�;

Issccði; j; k; lÞ ¼ 1
4
½Iccði � j; k þ lÞ þ Iccði � j; k � lÞ � Iccði þ j; k þ lÞ � Iccði þ j; k � lÞ�;

Iccði; jÞ ¼

Z1

0

cos ipx cos jpxdx ¼

0; iaj;

1=2; i ¼ ja0;

1; i ¼ j ¼ 0:

8><
>:

Eqs. (9) and (10) can be written in matrix–vector form as

Mu €qu
þ Cu _qu þ Kuqu þ Kw

2 ðq
wÞqw ¼ 0; ð11Þ

Mw €qw
þ Cw _qw þ Kwqw þ Ku

2ðq
uÞqw þ Kw

3 ðq
wÞqw ¼ 0; ð12Þ

where qu ¼ ½qu
1; qu

2; . . . ; q
u
N �

T and qw ¼ ½qw
1 ; qw

2 ; . . . ; q
w
M �T. The entries of matrices Mu, Mw, Cu, Cw,

K
u and K

w are respectively Mu
ij ; Mw

ij ; Cu
ij; Cw

ij Ku
ij and Kw

ij : Furthermore, the entries of matrices
Kw

2 ðq
wÞ; Ku

2ðq
uÞ and Kw

3 ðq
wÞ are respectively

Kw
2ij

¼
XM

k¼1

kw
ijkqw

k ; Ku
2ij

¼
XN

k¼1

Ku
ijkqu

k and Kw
3ij

¼
XM

k¼1

XM

l¼1

Kw
ijklq

w
k qw

l :

Eqs. (11) and (12) can be grouped as

M€qþ C_qþ Kqþ K2ðqÞqþ K3ðqÞq ¼ 0; ð13Þ

where

q ¼ ½qu; qw�T; M ¼
Mu 0

0 Mw

" #
; C ¼

Cu 0

0 Cw

" #
;

K ¼
Ku 0

0 Kw

" #
; K2 ¼

0 Kw
2

0 Ku
2

" #
; K3 ¼

0 0

0 Kw
3

" #
:

For the forced response of the system, an excitation term can be added to the right-hand side of
Eq. (13), i.e.

M€qþ C_qþ Kqþ K2ðqÞqþ K3ðqÞq ¼ F cos not ð14Þ

in which o is the nondimensional excitation frequency whose physical counterpart is o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P=rAL2

q
:
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4. IHB formulation

In this section, the IHB method is formulated to solve Eq. (14). With the new dimensionless
time variable t defined as

t ¼ o t; ð15Þ

Eq. (14) becomes

o2Mq00 þ o Cq0 þ ½Kþ K2ðqÞ þ K3ðqÞ�q ¼ F cos nt ð16Þ

in which prime denotes differentiation with respect to t.
The first step of the IHB method is the incremental procedure. Let qj0 and o0 denote a state of

vibration; the neighboring state can be expressed by adding the corresponding increments as

o ¼ o0 þ Do; qj ¼ qj0 þ Dqj; ð17Þ

where j ¼ 1; 2; . . . ;m and m ¼ N þ M :
Substituting Eqs. (17) into Eq. (16) and neglecting the higher-order incremental terms, one

obtains the following linearized incremental equation in matrix–vector form:

o2
0MDq00 þ o0 CDq0 þ ðKþ K�

2 þ 3K3ÞDq ¼ R� ð2o0Mq000 þ Cq00ÞDo; ð18Þ

R ¼ F cos nt� fo2
0Mq000 þ o0 Cq

0
0 þ ½Kþ K2ðq0Þ þ K3ðq0Þ�q0g ð19Þ

in which

q0 ¼ ½q10; q20; . . . ; qm0�
T; Dq ¼ ½Dq1; Dq2; . . . ;Dqm�

T;

K�
2 ¼

0 2Kw
2

Kþ
2 Ku

2

 �
; Kþ

2ij
¼

XM

k¼1

Ku
ijkqw

k

and R is a residual/corrective vector that goes to zero when the (numerical) solution is
exact.
The second step of the IHB method is the harmonic balance procedure. Let

qj0 ¼
Xnc

k¼1

ajkcosðk � 1Þtþ
Xns

k¼1

bjk sinkt ¼ CsAj; ð20Þ

Dqj ¼
Xnc

k¼1

Dajk cos ðk � 1Þtþ
Xns

k¼1

Dbjk sin kt ¼ CsDAj ð21Þ

where

Cs ¼ ½1; cos t; . . . ; cos ðnc � 1Þt; sin t; . . . ; sin ns t�;

Aj ¼ ½aj1; aj2; . . . ; ajnc
; bj1; bj2; . . . ; bjns

�T;

DAj ¼ ½Daj1;Daj2; . . . ;Dajnc
;Dbj1;Dbj2; . . . ;Dbjns

�T:
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Then, q0 and Dq can be expressed in terms of the Fourier coefficient vector A ¼ ½A1;A2 . . . ;Am�
T

and its increment DA ¼ ½DA1;DA2 . . . ;DAm�
T as

q0 ¼ SA; Dq ¼ SDA ð22Þ

in which S ¼ diag: ½Cs;Cs; . . . ;Cs�: Substituting Eqs. (22) into Eq. (18) and applying the Galerkin
procedure for one cycle, one obtains the following set of linear equations in terms of DA and Do:

�KmcDA ¼ �R� �RmcDo; ð23Þ

where

Kmc ¼

Z 2p

0

ST½o2
0MS00 þ o0CS

0
þ ðKþ Kn

2 þ 3K3ÞS�dt;

�R ¼

Z 2p

0

STfF cos nt� ½o2
0MS00 þ o0CS

0
þ ðKþ K2 þ K3ÞS�gdtA;

�Rmc ¼

Z 2p

0

STð2o0MS00 þ CS0
ÞdtA:

The solution process begins with a guessed solution. The nonlinear frequency–amplitude
response curve is then solved point-by-point by incrementing the frequency o or incrementing a
component of the coefficient vector A. The Newton–Raphson iterative method can be employed.
5. Numerical calculations

To illustrate the power of the IHB method, some numerical examples are presented in this
section. If we take N=M=1 in Eqs. (7) and (8), i.e. only one longitudinal mode and one
transverse mode are taken, then Eqs. (9) and (10) become

€qu
1 � ðv2 � v21Þp

2qu
1 ¼ 0; ð24Þ

€qw
1 þ ðv2f p

2 � v2 þ 1Þp2qw
1 þ 3

8
v21p

4ðqw
1 Þ

3
¼ 0: ð25Þ

Obviously, the longitudinal vibration is linear and the transverse vibration is nonlinear.
Moreover, they are not coupled. Eq. (25) is the famous Duffing equation and its nonlinear
dynamic characteristics have been thoroughly investigated by many researchers. Letting
N ¼ M ¼ 2, i.e. two longitudinal and two transverse modes are considered, Eqs. (9) and (10)
become

€qu
1 þ m1 _q

w
2 � ðv2 � v21Þp

2qu
1 þ v21p

3qw
1 qw

2 ¼ 0; ð26Þ

€qu
2 þ m2 _q

u
1 � 4ðv2 � v21Þp

2qu
2 þ

1
2v

2
1p

3ðqw
1 Þ

2
¼ 0; ð27Þ

€qw
1 þ m1 _q

w
2 þ k11q

w
1 þ k12q

w
1 ðq

w
2 Þ

2
þ k13ðq

w
1 Þ

3
þ v21p

3ðqu
1q

w
2 þ qu

2q
w
1 Þ ¼ 0; ð28Þ

€qw
2 þ m2 _q

w
1 þ k21q

w
2 þ k22q

w
2 ðq

w
1 Þ

2
þ k23ðq

w
2 Þ

3
þ v21p

3qu
1q

w
1 ¼ 0; ð29Þ
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where

m1 ¼ �16v=3; k11 ¼ ðv2fp
2 � v2 þ 1Þp2; k12 ¼ 3v21p

4; k13 ¼ k12=8;

m2 ¼ �m1; k21 ¼ 4ð4v2fp
2 � v2 þ 1Þp2; k22 ¼ k12; k23 ¼ 2k12:

Riedel and Tan [12] investigated the forced transverse response of an axially moving strip using
the method of multiple scales. With reference to the typical parameters of a belt drive system given
in Ref. [12], we shall assume

v21 ¼ 1124; v2f ¼ 0:0015 and v ¼ 0:6

throughout this section. The natural frequencies can be approximated with the linear undamped
natural frequencies by dropping the nonlinear and damping terms in Eqs. (26)–(29). In this light,
the linear natural frequencies are estimated to be 2.54 and 5.25 for the transverse vibration, and
105.31 and 210.62 for the longitudinal vibration. The natural frequencies of the transverse
vibration are far away from that of the longitudinal vibration so that the coupled effect between
them should be weak. Hence, we will focus on the forced transverse response of the moving beam
by neglecting the effect of the longitudinal vibration in the following study. By setting qu

i s to zero
and by incorporating the force terms, Eqs. (28) and (29) become

€qw
1 þ m1 _q

w
2 þ k11q

w
1 þ k12q

w
1 ðq

w
2 Þ

2
þ k13ðq

w
1 Þ

3
¼ F1 cos O t; ð30Þ

€qw
2 þ m2 _q

w
1 þ k21q

w
2 þ k22q

w
2 ðq

w
1 Þ

2
þ k23ðq

w
2 Þ

3
¼ F2 cos O t; ð31Þ

where O is the forcing frequency. By dropping the nonlinear terms, the linear natural frequencies
can be solved from the following equation:

o4 � ðk11 þ k21 � m1m2Þo
2 þ k11k21 ¼ 0: ð32Þ

For the chosen v1 and vf, Fig. 2 plots the ratio of the second natural frequency o20 to the first
natural frequency o10 versus the axial speed v. For a nonlinear system with cubic nonlinearity, the
internal resonance usually occurs when the natural frequency o20E3o10. It can be found from
Fig. 2 that o20/o10E3 when v21 ¼ 1124; v2f ¼ 0:0015 and v ¼ 0:6: With this value of v, o10 ¼

2:11641 and o20 ¼ 6:3109:

5.1. Fundamental resonance at O near o10

In order to obtain the fundamental resonance when the forcing frequency O is near the first
natural frequency o10, one should take F2=0 in Eq. (31). In the following calculation, we take
F1=0.03 and nc ¼ ns ¼ 4: As Eqs. (30) and (31) do not contain quadratic nonlinear terms, qw

1 and
qw
2 should not contain even harmonic terms and, thus, can be expressed as

qw
1 ¼ A11 cos ðtþ f11Þ þ A13 cos 3 ðtþ f13Þ þ . . . ; ð33Þ

qw
2 ¼ A21 cos ðtþ f21Þ þ A23 cos 3 ðtþ f23Þ þ . . . ð34Þ

where t ¼ Ot and f denote phase difference. The fundamental response is expressed mainly by the
O� A11;O� A13;O� A21 and O� A23 curves which are shown in Figs. 3(a–d), respectively. A11

and A13, defined in Eq. (33), are respectively the amplitudes of the first and the third harmonic
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Fig. 2. Ratio of transverse natural frequencies versus speed for v21 ¼ 1124 and v2f ¼ 0:0015.
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terms in the first variable qw
1 : Meanwhile, A21 and A23, defined in Eq. (34), are respectively the

amplitudes of the first and the third cosine harmonic terms of the second variable qw
2 : To facilitate

the understanding of the relation between forced and free vibration, the free vibration backbone
curves for A11, A13, A21 and A23 are also plotted. It can be seen that 9A119 b 9A139 and 9A239 b
9A219. Therefore, the first and third harmonic terms are the major modes of qw

1 and qw
2 ,

respectively.
One can note the internal resonance on the amplitudes of the responding modes in Figs. 3a and

d. Both A11 and A23 possess three solutions. Their first solutions A
ð1Þ
11 and A

ð1Þ
23 are of different

phases, and represent the in-phase and out-of-phase responses, respectively. Starting from P1’s in
the respective figures, both jA

ð1Þ
11 j and jA

ð1Þ
23 j increase with O to the turning points P2’s. Before P2’s,

jA
ð1Þ
11 j4jA

ð1Þ
23 j and thus the major mode of qw

1 is the responding mode. At P2’s, jA
ð1Þ
11 j jumps down

and jA
ð1Þ
23 j jumps up. Afterwards, jA

ð1Þ
11 j drops and jA

ð1Þ
23 j rises slowly. The responding modes switch

from the major mode of qw
1 to that of qw

2 . Though the frequency pertinent to the A
ð1Þ
23 is 3Ot, A

ð1Þ
23

here is not triggered by F2cos(3Ot) which acts on qw
2 . Rather, A

ð1Þ
23 is induced by the nonlinear effect

intrinsic to the dynamic system. This phenomenon is typically known as internal resonance.
Noticeably, the frequencies at P2’s are close to the first natural frequency o10 or the exchange of
the responding mode occurs at the vicinity of o10.
The second solutions of A11 and A23 are respectively A

ð2Þ
11 and A

ð2Þ
23 which are of the same phase.

A
ð2Þ
11 and A

ð2Þ
23 start from P4’s and terminate at P6’s via turning points P5’s. In the course, jA

ð2Þ
11 j

increases gradually but jA
ð2Þ
23 j decreases gradually. In other words, the responding mode transits

gradually from the major mode of qw
2 back to that of qw

1 . The third solutions of A11 and A23 are
respectively A

ð3Þ
11 and A

ð3Þ
23 which are again of the same phase. A

ð3Þ
11 and A

ð3Þ
23 start from P7’s and

terminate at P9’s via turning points P8’s. In the course, both jA
ð3Þ
11 j and jA

ð3Þ
23 j drop gradually. There

is no exchange of responding mode as in the first solutions (A
ð1Þ
11 and A

ð1Þ
23 ) and second solutions

(A
ð2Þ
11 and A

ð2Þ
23 ).

The internal resonance pattern for A13 and A21 revealed in Figs. 3b and c are similar to that of
A11 and A23. However, A13 and A21 are only the minor modes of respectively qw

1 and qw
2 as

jA13j  jA21j � jA11j  jA23j.
To the best knowledge of the authors, the internal resonance phenomenon portrayed in Figs. 3a

and d bodies have not been reported in the literature of axially moving bodies and nonlinear
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vibration. Nevertheless, the phenomenon is very much similar to the internal resonance previously
reported for nonlinear vibration of clamped–hinged beams [28] and thin plates with one edge
clamped and the opposite edge hinged [29]. Though they arises from different sets of governing
equations and are solved by different methods, they share the common cubic nonlinearity feature
and o20  3o10:
Fig. 4 shows the forced response curves of the Duffing equation as obtained by adding the

excitation term F1 cos Ot to the right-hand side of Eq. (25). Comparing Fig. 4 with Fig. 3a, one
can discover the important difference between the characteristics of the one- and the two-degree-
of-freedom systems. In the single-degree-of-freedom system, A

ð1Þ
11 and A

ð2Þ
11 in Fig. 3a becomes A

ð1Þ
1

in Fig. 4. The turning point P2 does not exist and there is no internal resonance for the in-phase
response curve. On the other hand, the out-of-phase responses A

ð3Þ
11 and A

ð3Þ
1 in the two figures

exhibit the same characteristic.

5.2. Superharmonic resonance at O near o10/3

In order to obtain the superharmonic resonance as O near o10=3; one should again take a
nonzero F1 and a zero F2 in Eqs. (30) and (31). Furthermore, we set F1=0.03 and nc ¼ ns ¼ 4: The
solution of qw

1 and qw
2 are again taken in the form of Eqs. (33) and (34). Results show

jA13j � jA11j and jA23j � jA21j. In other words, the response is dominated by the third harmonic
terms whose frequency is three times of the excitation frequency. Consequently, these resonance
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are called superharmonic resonance which are expressed by the O� A13 and O� A23 curves in
Figs. 5a and b, respectively. The superharmonic responses of O� A13 and O� A23 show the same
characteristics which are similar to that of the fundamental resonance of the single-degree-of-
freedom system in Fig. 4. The sharp turns of the frequency–amplitude response curves are
responsible for the jump phenomenon.
5.3. Fundamental resonance at O near o20

In order to obtain the fundamental resonance as O nears the second natural frequency o20, one
should take a zero F1 and a nonzero F2 in Eqs. (30) and (31). Furthermore, we take F2=0.03 and
nc ¼ ns ¼ 4: The solutions of qw

1 and qw
2 are also taking the form of Eqs. (33) and (34). Numerical

results show that jA11j � jA13j and jA21j � jA23j: In other words, the response is dominated by
the first harmonic terms whose frequency is the same as the excitation frequency. Therefore, these
responses are termed as fundamental resonances. They are expressed by the curves O� A21 and
O� A11 in Figs. 6a and b, respectively. The characteristic of A11 and A21 is similar to that of the
single-degree-of-freedom system shown in Fig. 4.
5.4. Subharmonic resonance at O near o20

Besides the fundamental resonance, there is another kind of resonance named subharmonic
resonance that occurs when O  o20. To obtain the subharmonic resonance, one should take a
zero F1 in Eq. (30) and a nonzero F2 on the third harmonic term in Eq. (31). Let t ¼ O t ¼ 3t1;
the solution of qw

1 and qw
2 in the present case are taken to be

qw
j ¼

Xnc

k¼1

ajk cos ð2k � 1Þt1 þ
Xns

k¼1

bjk sinð2k � 1Þt1 for j ¼ 1; 2: ð35Þ
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Again, we take f2=0.03 and nc ¼ ns ¼ 4: Numerical results show that the coefficients ajk and
bjk ðj ¼ 1; 2; k ¼ 3; 4Þ are near to zero. Hence, the assumed solutions are simplified to be

qw
1 ¼ A11 cos 1

3
ðtþ f11Þ þ A13 cos ðtþ f13Þ þ � � � ; ð36Þ

qw
2 ¼ A21 cos 1

3
ðtþ f21Þ þ A23 cos ðtþ f23Þ þ � � � : ð37Þ

Results show that jA11j � jA13j and jA21j � jA23j: In other words, the response is dominated
by the first harmonic terms whose frequency is one-third of the excitation frequency. Hence, these
resonances are called subharmonic resonances which are expressed by the O� A11 and O� A21

curves in Figs. 7a and b, respectively. In other words, the excitation at a high frequency may
produce significant responses in the low-frequency modes and, particularly, the fundamental
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mode. Figs. 7a–d show how complicated the solution can be when O  o20: Some interesting
phenomena are noted as follows:
1.
 There are two solutions in the subharmonic resonance as O  o20:

2.
 jA11j in Fig. 7a can be as large as 6 jA21j in Fig. 7b, 10 jA23j in Fig. 7d and even 20 jA13j in

Fig. 7c. Clearly, the subharmonic response is dominated by A11 or the subharmonic term of the
first variable.
3.
 Double roots are encountered for A13 and A23 as shown in Figs. 7c and d. In other words,
A

ð1Þ
13 ¼ A

ð2Þ
13 ; A

ð1Þ
23 ¼ A

ð2Þ
23 :
4.
 There is no jump phenomenon in all subharmonic resonance.

Lastly, it is worth pointing out that one can calculate another set of solutions when A11 ¼

A21 ¼ 0: As O  o20; the pertinent response curves O  A13 and O  A23 express the fundamental
resonance and are similar to the O� A11 and O� A21 curves in Figs. 6a and b.
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6. Concluding remarks
1.
 The Incremental Harmonic Balance (IHB) method has been shown to be a straightforward,
efficient and reliable method for treating the nonlinear vibration of axially moving systems.
2.
 The forced response of an axially moving beam with internal resonance between the first two
transverse modes is studied. In the presence of internal resonance due to the coupling of the two
modes, numerical results reveal that excitation at a frequency close to the fundamental
frequency can produce a significant response at a higher harmonic frequency. Conversely,
excitation at a frequency close to a higher harmonic frequency may produce a significant
response at a lower harmonic frequency and, in particular, at the fundamental frequency. The
observed internal resonances are rich and complicated. To the best knowledge of the authors,
the observations have not been reported in the literature on nonlinear vibration analysis of
axially moving media.
3.
 Stability analysis of the periodic response has not been studied here. It will be discussed in a
separate paper.
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[19] H.R. Öz, M. Pakdemirli, Vibration of an axailly moving beam with time dependent velocity, Journal of Sound and

Vibration 227 (1999) 239–257.

[20] H.R. Öz, On the vibration of an axially traveling beam on fixed supports with variable velocity, Journal of Sound

and Vibration 239 (2001) 556–564.

[21] R.F. Fung, H.C. Chang, Dynamic and energetic analyses of a string/slider non-linear coupling system by variable

grid finite difference, Journal of Sound and Vibration 239 (2001) 505–514.



ARTICLE IN PRESS

K.Y. Sze et al. / Journal of Sound and Vibration 281 (2005) 611–626626
[22] B. Ravindra, W.D. Zhu, Low–dimensional chaotic response of axially accelerating continuum in the supercritical

regime, Archives of Applied Mechanics 68 (1998) 195–205.

[23] J. Moon, J.A. Wickert, Nonlinear vibration of power transmission belts, Journal of Sound and Vibration 200 (1997)

419–431.

[24] F. Pellicano, A. Fregolent, A. Bertuzzi, Primary and parametric non-linear resonance of a power transmission belt:

experimental and theoretical analysis, Journal of Sound and Vibration 244 (2001) 669–684.

[25] S.L. Lau, Y.K. Cheung, Amplitude incremental variational principle for nonlinear structural vibrations, Journal of

Applied Mechanics 48 (1981) 959–964.

[26] Y.K. Cheung, S.L. Lau, Incremental time–space finite strip method for nonlinear structural vibrations, Earthquake

Engineering and Structural Dynamics 10 (1982) 239–253.

[27] S.L. Lau, Y.K. Cheung, S.Y. Wu, A variable parameter incrementation method for dynamic instability of linear

and nonlinear elastic systems, Journal of Applied Mechanics 49 (1982) 849–853.

[28] S.H. Chen, Y.K. Cheung, S.L. Lau, On the internal resonance of multi-degree-of-freedom systems with cubic

nonlinearity, Journal of Sound and Vibration 128 (1989) 13–24.

[29] S.L. Lau, Y.K. Cheung, S.Y. Wu, Nonlinear vibration of thin elastic plates—part 2: internal resonance by

amplitude-incremental finite element, Journal of Applied Mechanics 51 (1984) 845–851.


	The incremental harmonic balance method for nonlinear vibration of axially moving beams
	Introduction
	Equations of motion
	Separation of variables
	IHB formulation
	Numerical calculations
	Fundamental resonance at Omega near  10
	Superharmonic resonance at Omega near  10/3
	Fundamental resonance at Omega near  20
	Subharmonic resonance at Omega near  20

	Concluding remarks
	Acknowledgements
	References


